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1. SUMMARY

The objective of this program is the development of a 403 MHz surface

acoustic wave oscillator suitable for use in an expendable radiosonde. Due

to the extreme temperature range {-70°C to +70°C)

the radiusonde must operate in

and the simultaneous deployment of many radiosondes operating within a limited

bandwidth, temperature stability is the oscillator's most critical per formance

parameter. Stability of 200 ppm or better is required. The circuit is also {

required to tune from 400 MHz to 406 MHz, transmit 200 mW (+23 dBm), and be

capable of both amplitude and frequency modulation,

outlined in Table i-1,

Specified performance is

Table 1-1, Oscillator Performance Specifications 1

Parameter Specification
Frequency 400-406 MH:z
Stability . 200 ppm
Modulation

PAM 0 to 2000 pps

FM 100 KHz Modulation

Freguency
Qutput Power 200 mW
Frequency Pulling < +20 ppm
Power Supply 24V +10%
<2.5 watts

Comment
Settable to 50 ppm

-70°C to +70°C

300 KHz/V Modulation
Sensitivity

50 ohm load

ZL = 25 to 75 ohms

Other supply voltages
can be considered

During the first six months of the program the oscillator design has

been completed, and all the individual RF subcircuits have been designed,

fabricated and tested. These circuits include the SAW delay line, loop amplifier,

phase shifter, and an injection locked oscillator.

This report discusses overall



oscillator design, and gives a detailed description of the design and perfor-
mance of the various subcircuits of the oscillator. The oscillator design is
described in Section 2, while the design and performance of the individual
subcircuits are described in Section 3. Measured performance not found in

Section 3 can be found in the Appendix.

2. OSCILLATOR DESIGN

A block diagram of the 403 MHz SAW Stabilized Oscillator is shown in
Figure 2-1. The circuit consists of a relatively low power, tunable SAW
oscillator driving an injection locked oscillator, plus associated DC circuitry.
The SAW oscillator produces approximately 20 mW (+13 dBm) RF power, tunable
from 400 MHz to 406 MHz. Both mechanical tuning for frequency selection and
electronic tuning for frequency modulation are employed, The injection locked
oscillator which is locked to the SAW oscillator output produces an RF output
in excess of 200 mW (+23 dBm). The ILO therefore provides approximately 10 dB
of gain. Bias switching circuity in the ILO is used for pulse amplitude modu-
Tation (PAM). The BC circuitry {not yet designed) will consist of a voltage
regulator to minimize frequency pushing, tuning and frequency modulation
circuitry, and a temperature compensation network to compensate for both varactor
reactance changes and SAW delay variation with temperature.

The heart of this circuit is clearly the SAW oscillator. The conditions
for oscillation in this circuit are (1) gain around the loop must exceed all
losses and (?) phase around the loop must equal a multiple of 2- radians. These

conditions can be expressed as

Ls(f) + LI(f) G{f,A) (2.1)
and
b P
- VN + = 2N (2.2)
2




™\

where

—+
"

oscillation frequencies

: center-to-center transducer separation

-
|

< = phase shift through all elements except SAW delay line

N = an integer

—
—
—
~
n

6(f,A)

= surface wave velocity

insertion loss of SAW delay line

insertion loss of feedback loop components

A = output power level

= amplifier gain as a function of and output Tevel, A

OSCILLATOR BLOCK DIAGRAM
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Figure 2-1.

Oscillator Block Diagram




The frequency of oscillation can be determined from equation (2.2)

It is possible for multiple solutions to equations (2.1) and (2.2)
to exist as shown in Figure 2-2 where many solutions to the phase condition
exist within the SAW passband. For single-mode operation, the SAW delay line
is designed such that there is only one solution for equation (2.2) which is
in the passband of the delay line. Such a design is shown in Figure 2-3.

As a general rule, the loss associated with the feedback loop components,
LI(f), and the amplifier gain, G(f,A), are slowly varying functions of
frequency over a broad range around the frequency for which the oscillator is
Feing designed, and the SAW response, LS(f), is a very strong function of
frequency. The SAW oscillator is designed so that the combination of SAW
delay line loss plus amplifier gain exceeds unity over a desired frequency
band around the desired operating frequency. As long as only one sGiution

to (2.2) falls within the nassband response of the SAW delay line, single
mode operation ot the SAW oscillator is guaranteed.

The loop amplifier shown in Figure 2-4 provides gain to overcome losses
around the loop - thereby meeting the first condition for oscillation (equation
(2.1)). The amplifier is designed to have linear gain well in excess of the
Toop losses. The required gain margin is a function of the saturation charac-
teristics of the amplifier chain, but typically must be greater than 4 dB.
Measurements made at TRW have shown that a minimum of 4 dB gain margin will
provide maximum output power and minimum phase noise. The effect of gain
margin on oscillator output power and phase noise i< shown in Fiqures 2-5
through 2-8. For a circuit with adequate gain margin, the oscillator output
power will equal the saturated output power of the amplifier minus the power

coupled back into the loop.
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The second condition for oscillation, equation (2.2), is met through use
of the phase shifter shown in Figure 2-4. The frequency of oscillation is set
by varying : in (2.3). It is necessary for the phase shifter to provide adequate
phase variation to tune across the required frequency band. This phase variation
will be defined by the phase slope of the delay line. It is generally necessary
to provide tuning phase in excess of that required for any given SAW to accomo-
date the variation in absolute transmission phase from SAW to SAW. It is
reasonable to expect variations in absolute delays for SAWs to be as large as
+0.1:. For typical delay lines of 100* electrical length, this equates to +36°
variation in transmission phase. The data from measurements of 16 delay lines
shown in Table /-1 demonstrates typical variation in absolute phase. It is
often required that a full 360" of phase shift be provided to accomodate tuning

range and variation from SAW to SAW.

Table 2-1. MEASURED VARIATIONS IN
ABSOLUTE PHASE
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Based on these general considerations, specifications for the individual

oscillator subcircuits have been generated.

in Table 2-2.

Table 2-2. QSCILLATOR SPECIFICATIONS

Circuit Parameter
Delay Line Center Frequency

3 dB Bandwidth
Loss (Matched)
Delay

Loop Amp Frequency Band
Gain

PSAT
VSWR (In,Qut)

VSupp‘ly
Phase Shifter Loss

Phase Shift
Tuning Voltage

Power Splitter Coupling
Loss

ILo Natural Frequency
Power Qut
Injection Locking
Bandwidth

PIN.
]

vSupply

Specified

Performance

403 +0.150 MHz

6.3 MHz

>350-450 MH2

> 40 dB
> 16.5 dBm

2.5:1
2V

A

—

<3 dB
>180°
T-10v

3.0 dB
<0.5 dB

403 MHz
> +23 dBm
+16 MHz
+13 dBm

12V

These specifications are shown

Comments

ST-cut quartz

Two cascaded phase
shifters to be used

200 mW

Greater locking range
may be required to
accomodate temperature
effects

As these specifications imply, a 12V supply will be used throughout. Al} of

the transistor circuitry would perform optimally with a 12V supply. Only the

varactors in the phase shifter would benefit from using the full 24V available

and due to the varactor C-V relationship, this benefit is small. The 12V

supply was therefore chosen to conserve power.




A review of Table 2-1 points out key features of the design. The loop
amplifier gain of 40 dB exceeds the 30 dB loop loss by 10 dB. This is adequate
to drive the amplifier well into saturation and provides margin for SAW and
phase shifter variations. The delay in the SAW implies a mode spacing of
1.0 MHz. T1f 20 ns of delay in other components in the loop is assumed the
mode spacing would be reduced to 8.3 MHz. This is well in excess of the 7 MHz
3 dB bandwidth of the SAW. Two phase shifters will be used in cascade. A
single phase shifter (of the design contemplated) will produce no more than
250° phase shift. Therefore, two are required to produce a 360° phase shift.
The ILO will lock over a range far in excess of the 6 MHz operating band. This
is to account primarily for the drift in ILO natural frequency with temperature.

In the following section the design and performance of these individual

circuits is discussed in detail.

3. CIRCUIT DESIGN AND PERFORMANCE

a. 403 MHz SAW Delay Line

It is required that the 403 MHz SAW oscillator be operated with one stable
single mode output and be tunable over the 400 MHz to 406 MHz frequency range.

To achieve this, the specifications for the SAW delay line were set as follows:

Center Frequency 403.0 +0.15 MHz
3 dB Bandwidth 6.3 +0.1 MHz
Time Delay 0.10 +0.01 _sec
Insertion Loss (matched) - 20 dB
Substrate ST Quartz
Temperature Stability
Turnover Temperature (TO) -10°¢C - T0 10 ¢
2nd Ordgr'Temperature -8 ?
Coefficient 3.2 x 1.7 /(00)

12




The ST-cut of quartz was chosen because it is one of the most temperature
stable SAW substrates available. Its turnover temperature (To) for the free
surface condition is near 23°C. However, with metal Toading (approximately
700 ; aluminum), To is expected to be lowered near 0°C. The 3 dB bandwidth
requirement is set so that in addition to covering the operating frequency
range, there is a 0.2 MHz margin to allow for center frequency variation in

the SAW device.

The most critical parameter in the SAW requirement is the time delay.
In the present case, the time delay has been specified to be much shorter than
that normally considered necessary for single mode operation. This is because
the external time delay in the oscillator loop due to elements other than the
SAW delay line can be a significant portion of the total delay. Preliminary
results indicate that for the proposed SAW oscillator, external delay amount to
at least 20 ns. This will increase the total loop delay to approximately 0.12 to
0.13 .sec. The mode spacing of the oscillator will thus be on the order of
7 MHz and not the 10 MHz which one would get if the external delay is neglected.
With 7 MHz mode spacing, single mode operation can be achieved if the amplifier
qair is set properly.

To meet these specifications, the delay line was designed to consist
of one lonqg and one “nort transducer, closely spaced one next to the other.
The 3 dB bandwidth i< largely defined by the long transducer. The transducers
are both desiqgned to operate at the fundamental frequency and contain split
finger< to minimize reflection among fingers. The center-to-center separation
between transducers in 40.3 o where ‘o is the acoustic wavelength.

The other design parameters are shown in the following table:




Input Transducer Qutput Transducer
Number of Finger Paris 30 50
Acoustic Aperture 45 Yo 45 *o
Finger Width 1.3 &m 1.3 um

The unmatched insertion loss of such a device should be approximately 1
40 dB. Upon matching, it can be reduced to 18 dB or less.
The schematic of the SAW delay line is shown in Figure 3-1. A ground

bar has been placed between the transducers to cut down the direct electrical

feedthrough.
INPUT TRANSDUCER r OUTPUT TRANSDUCER
— 1
. - .

i 1l

-—— - —-— e =

t-

Figure 3-1. SCHEMATIC OF 403 MHz SAW DELAY LINE

] 4 t
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This delay line has been designed, fabricated and tested. Performance of
the unmatched delay line is shown in Figures 3-2 through 3-4. The circuit
has been packaged in a T0-5 can to minimize size and cost. A photograph of
the packaged SAW is shown in Figure 3-5. Matching networks for the SAW have
also been designed, built, and tested. A schematic of the matched circuit is

shown in Figure 3-6. Performance of the matched delay line is shown in

Figures 3-7 and 3-8.

b. Loop Amplifier

The loop amplifier is used to provide gain to overcome losses in all
other loop elements. A schematic of the amplifier used for the SAW oscillator
is shown in Figure 3-9. The circuit is a three-stage, lumped element design
using two BFR 91 transistors and one MRF 559. The MRF 559 is used in the
amplifier output stage to provide saturated output power in excess of 40 mW
(+16 dBm). A Tumped element design was used to minimize circuit size. Dis-
tributed matching networks would have reguired more volume than avaijlable.

This circuit has been designed, built, and tested. A photograph of
the breadboard circuit is shown in Figure 3-10. Test results for the amplifier
are shown in Figures 3-11 through 3-16. Figure 3-11 shows linear gain in
excess of 40 dB for temperatures ranging from -70°C to +70°C. Saturation
characteristics for the circuit are shown in Figures 3-12 and 3-13. Saturated
gain for input power of +18 dBm is shown in Figure 3-14. Transmission phase
through the amplifier for inear and saturated operating conditions is shown
in Figures 3-15 and 3-16, respectively.

A1l of the data shown above has also been taken as a function of supply
voltage. PResults indicate that the transmission phase of the amplifiers is
sensitive to supply voltage particularly at temperature extremes. The supply

to the amplitier wi.l therefore be requlated to 9V.

15
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As the results show, the loop amplifier as designed is adequate for use

in the SAW oscillator.

is shown below:

Parameter

A comparison of the measured and required performance

Required Performance Measured Performance

31

Frequency Band >350-450 MHz >350-450 MHz
Gain >40 dB 42-48 dB
N .
Pent +16.5 dBm +14.5 dBm* (9V bias)
VSWR (In,0ut) <2.5:1 <2.0:1
VSupp]y 12v 12V {regulated to 9V)
*The saturated output power with 12V bias is +17.5 dBm. The ILO
has been designed to operate with Tower injected power.
C. Phase Shifter
The phase shifter block diagram is shown in Figure 3-17.
V20ut
] :o----------:-------. : """ -
INPUT N . —_—
V,. . H s —
Tin : : o, ol
: : 1
4 HEENS { REFLECTIVE
OUTRUT O T YT LOADS
4out v o
Jout, : ‘2
HYBRTD v Po—
COUPLER < 31” S.-i;-l-l
Figure 3-17. PHASE SHIFTER BLOCK DIAGRAM




The circuit consicts of a hybrid coupler loaded with rtunable, reflective
Toads. In this design, power incident at port 1 325 split with equal arplic.de,
and 90" relative phase between ports 2 and 3. Since the loads at por*s 7 and
3 are reflective, the power incident on these loads from ports 2 and 3 i-
reflected back into the coupler. The reflected signals experience a phase
shift associated with the reflection coefficient of the loads, and since *he
loads are tunable this phase shift can be varied. The reflected signals
entering the coupler at ports 2 and 3 add in phase at port 4 end add cut of
phase {rancel) at port 1. Therefore, this circuit will transfer a siqnal
incident at port 1 to port 4 with a phase shift which is a function of the
reflection coefficient of the loads.

To better understand the operation of this circuit, let V,. = Ae = be
At S E

= e and V = e, e

the <ignal input to part 1. Tren V’out ? Jout s

i.e., half of the power input to port 1 goes to each of ports 2 and 2. IF¥
the networks connected to ports 2 and 3 have reflection coefficients of | and

s, respectively, then the signals input to ports 7 and 3 are given as

V.. o=
Jin v 7

After traveliny throuqh the guadrature hybrid anain, the signal levels out of

yort 1 and 4 are qgiven by
f

\ Ay dt Jje.t + ) \
tout Le 1! 2] (3.3)
\ A J0 b+ /2] JOotv-y2). -

Yhour o F ) e 20 34
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S

It is now apparent that if q equals zero and all power incident

R vlout

at port 1 appears at port 4, More importantly, notice that V is a function

dout
of the load reflection coefficients. The relative phase of the output signal
is therefore determined by the phase of the load reflection coefficient.

In practice the loads are made identical but some small difference in

reflection coefficient will exist, The loads also will be lossy. Consider

the case where loads are neither equal nor ideal. Let

Joy
"1 = pe {3.5)
Js
T, T re 2 (3.6)
For this case
Che gt e g2y, 30 3
Vagut = . Le (e +e )] (3.7)
+:
°r ‘_.2 ](‘t+“/2 +‘—2 2)
s py e L2
V4out = Ppos 5 e (3.8)
The phase shift from port 1 to port 4 is therefore é + ;lw§~;g. The loss
through the phase shifter is 20 log (v cos;—]w?;g ) dB. For small differences

in the angles of the reflection coefficients, 9 and To the loss will be

determined by »  For a 90" difference in 0 and 3 dB of additional loss

:2’
will occur.
The design of the hybrid coupler itself can be either distributed or

lumped. For this application a lumped element design was chosen to minimize

nize. A schematic of this coupler is shown in Figure 3-18
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%

1 (IN) 3
" ‘i L r vl- L =)
Laad )
C/2 = - ;C/Z
ot : J —
2 4 (out)

Figure 3-18  COUPLER SCHEMATIC

For this design

. JL _
ZO e (3-9)
1
and . \/*_ (3-10)
vLC
where
ZO = characteristic impedance
o " radian frequency at center band.

6

For the phase shifter, o ° 2-(403 x 107), and Z0 = 50c. Therefore

ZO = E = 50 (3—].‘)
o " ~]f; = 2-(403 «x 106) (3-12)
vLC
and
L = 19.7 nH
(3-13)
C =7.9 pF

This coupler has been built and tested. Tests indicate that using 10 pf
capacitors will produce an equal -3.7 dB power split with relative phase of

88°. Using 8.2 pF capacitors produces a 90° relative phase split but the

34




amplitude split is unbalanced by 0.4 d8 to -3.6 dB and -4.0 dB. Measured
results for a breadboard coupler are shown in Figure 3-19.

The design of the circuit which will load the hybrid coupler is shown
in Figure 3-20. This load censists of a shunt indictance, a varactor, and a

DC blocking capacitor. The reflection coefficient of the load is

7 - 17
B S
= Ty {3.14)
L 0
where
Zindlca
7, = load impedance (=TS8
L Z. + 7
ng cap
ZO = system characteristic impedance (50 ohms typical)

The choice of inductor and varactor will determine the maximum phase variation
of the phase shifter and tuning range of the oscillator For maximum phase
variation, the inductor-varactor combination is designed to resonate in the
center of the varactor's tuning range. However, such a design results in a
nonlinear phase-voltage relationship due to the nonlinear capacitance-voltage
relgtionship of the varactor. To simplify temperature compensation and to
insure mare linear frequency modulation, it is desirab’ +to design a load

with a near linear phase voltage relationship. By increasing the inductance
value such that LC resonance occurs at the lower extreme of the capacitance
range, a more linear relationship is achieved. Such a design has been investi-

gated for this application but total phase shift was found to be inadequate.
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? l
= YgLock
) - BLOCK
& CyARACTOR

_o M, TUNING, TEMPERATURE
COMPENSATION

Figure 3-20. COUPLER LOAD

To select the LC combination most suitable the varactor diodes were first
characterized. Reflection coefficient as a function of voltage is shown in
Figure 3-21. Note that using the varactor alone would produce only a 607
phase shift for a 0-10V tuning range. This characterization also indicates
the diodes have approximately 0.5 ohm series resistance which will contribute
to the overall phase shifter loss. To resonate this capacitance an inductor
of approximately 8 nH was used. Assuming 0.02 ohm series resistance in the
inductor, a computer model of this load predicted the performance shown in
Figure 3-22. This compares well with the measured results shown in Figure 3-23

The total phase shifter, consisting of the coupler and the loads dis-
cussed above, has been constructed and tested. A photograph of the breadboard
phase shifter is shown in Figure 3-24  Test results for two such phase
shifters cascaded are shown in Figure 3-25. This figure is a plot of both
loss and phase through the circuit as a function of tuning voltage. The data
shows loss varying from approximately 5 dB at 0.5V down to 2 dB at 10V. The
decreasing loss results from a decrease in diode series resistance with
increasing reverse bias, The data also shows phase varying from 18° at 0.5V
to +180° at just below 2V, to -36" at 5V and back to +18" at 10V. A full
360" shift has been realized with this cascade of two phase shifters.

One of the difficulties encountered when using varactor diodes is their
capacitance variation with temperature. This variation translates into a chanqe
in reflection coefficient and therefore a change in phase through the circuit,
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Figure 3-24,
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d. Injection cocked Qscillator

The dnjection locked occillator (110 1. uned to ary Tie, vne gt
of the 5AW oscillator to the required /DU oW (423 dBmi. Puloe 4 plitude
modulation is alvo dccomplished in the 110, A choratic of “re o ivigit i
shown in Fiqure 3-27

The ocillator ic of the form of 4 Colpitty with g re-anant tank in thy
collector circuit and feedback to the enitter. The injection locking - 3onal

is applied to the emitter-base junction.
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This circuit has been designed, built and tested. A photograph of
the breadboard circuit is shown in Figure 3-28. Test results are shown in
Figures 3-29 through 3-3i Figure 3-29 is a plot if injection locking
bandwidth vs injection locking power. Figure 3-30 shows injection locking
bandwidth vs temperature. OQutput power vs frequency is shown in Figure 3-31.

Pulse amplitude modulation characteristics are shown in Figures 3-32
and 3-33. Time waveforms are shown in Figures 3-32a through 3-32e, while
frequency spectrum is shown in Figures 3-33a through 3-33d.

As the data shows, the ILO is adequate for this application. A

comparison of measured and required performance is shown below:

Parameter Requirement Performance
Center Frequency 403 MHz 403 MHz (adjustable)
Power Out 23 dBm »+24 dBm
Injection Locking Bandwidth 16 MHz 49 MHz (@ 25°C, +12 dBm)
P. . +13 dBm +12 dBm
inj
Vsupp]] +12V +12v

Figqure 3-28. PHOTOGRAPH OF ILO BREADBOARD CICUIT
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CaL Mo LTt Teegaene o= 40

(') Modalation Freqguency - 4 vy

Flgure 52300 0 0 amMDy g n wen 8 e A FORMS >0




(d) Madulation Frequency = 30 KHz

(e) Modulation Freguency = 300 ¥VHz

Figure 3-32. ILO AMPLITUDL MODULATION TIML WAVE FORMS (Continued)
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Figure 3-33.

30.0 4@ ATTEN 40 &8

(c) 100 ¥Hz Sweep Width

110 AMPLITUDE MODULATION FREQUENCY SPECTRUM
(MODULATION FREQUENCY = 10 YHz)
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4.0 CONCLUSION

The RF circuitry described in this report has been adequately developed
to be used in the construction of the 403 MHz SAW Oscillator. A number of
difficulties which were encountered during the circuit development should be
noted. The initial loop design did not adequately take into account the delay
in Toop components other than the SAW. The margin in mode spacing was there-
fore inadequate to assure a single oscillator output frequency. Both the SAW
matching circuit and the loop amplifier contributed significantly to this
additional delay. The sensitivity of the loop amplifier phase to bias - in
the saturated operating condition - was also not anticipated. Regulation of
the amplifier bias was added after this phenomenon was observed (see Appendix
8). The phase shifter construction was not trivial. Performance of the
circuit is dependent on both the inductance and coupling of the coil wires.
Turns per inch and twists per inch are both critical. Once these parameters
are determined, construction and performance of the coupler are very repeatable.

One observation regarding the temperature stability of the oscillator
circuitry should be made. The requirement for FM has made achieving the
required stability challenging. Frequency modulation requires electronic
tuning in the gscillator loop. The varactors used for this tuning are the
most unstable components in the oscillator. [t is primarily their capacitance
variation with temperature which requires a temperature compensation network
to be used. Were the radiosonde system to require AM only, a mechanical phase
shifter could be used for tuning and the stability of the oscillator would
primarily reflect the SAW delay line temperature variation and not that of
the phase shifter. Designing a mechanical phase shifter is far easier than

compensation for the varactors.
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APPENDIX A

SAW PERFORMANCE vs TEMPERATURE MEASUREMENTS
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APPENDIX B

AMPLIFIER PERFORMANCE
VS

SUPPLY VOLTAGE AND TEMPERATURE
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